Adaptive Array Processing for Multi-mission Phased Array Radar
نویسندگان
چکیده
As the use of phased array radars becomes more established for weather surveillance, adaptive array processing techniques will become more important to the weather radar community. Such techniques can be applied to phased array radars to improve angular resolution and also to suppress clutter compared to conventional beamforming methods. Thus, enhanced details of weather phenomena can be realized in terms of finer and better estimates of the reflectivity and radial velocity. This paper compares the performance of conventional beamforming to the performance of adaptive array processing based methods for a fully adaptive array and a partially adaptive array with six sidelobe-canceling elements, which is the configuration of the Multi-Mission Phased Array Radar (MPAR) of the National Weather Radar Testbed (NWRT) in Norman, Oklahoma. Different scenarios of fading clutter and clutter positions relative to the steering directions are considered. The simulated phased array concept uses a transmit beam that is wide in both angular directions to illuminate a large field of view and is thus termed an imaging radar. The receiver consists of individual antenna elements placed in a planar configuration. Time series signals for each antenna element are generated using a realistic radar simulator based on point-target scatterers, which flow and scatter according to a simulated environment produced from the Advanced Regional Prediction System (ARPS). Preliminary results show that, as expected, the performance of more sophisticated adaptive algorithms is superior compared to conventional beamforming, both in terms of angular resolution and clutter suppression.
منابع مشابه
Performance of Target Detection in Phased-MIMO Radars
In this paper, the problem of target detection in phased-MIMO radars is considered and target detection performance of phased-MIMO radars is compared with MIMO and phased-array radars. Phased-MIMO radars combine advantages of the MIMO and phased-array radars. In these radars, the transmit array will be partitioned into a number of subarrays that are allowed to overlap and each subarray transmit...
متن کاملDemonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR
PAMIR (Phased Array Multifunctional Imaging Radar) is an experimental airborne radar system that has been designed and built by the Research Institute for High Frequency Physics and Radar Techniques (FHR) of Forschungsgesellschaft für Angewandte Naturwissenschaften (FGAN). The goal is to meet the growing demands for future reconnaissance systems with respect to flexibility and multi-mode operat...
متن کاملSignal Processing Algorithm of STC Waveforms for the Phased array MIMO Radar: Overview on Target Localization
Abstract: The MIMO phased array radar is a theoretical concept for multi-sensor radar planning that combines elements of traditional phased-array radar with the developing technology of multiple-input multiple output (MIMO) radar. Space-time coding (STC) has been shown to play a key role in the design of Phased Array MIMO radar where MIMO radar can achieve improved localization performance by ...
متن کاملAn Update on Multi-channel Receiver Development for the Realization Multi-mission Capabilities at the National Weather Radar Testbed
This paper describes the status of a new project that will digitize radar signals coming from eight channels on the phased array antenna at the National Weather Radar Testbed (NWRT) in Norman, Oklahoma. At the current time, a single-channel digital receiver is operational to mimic the current WSR-88D capability. The multi-channel digital data will foster a new generation of adaptive/fast scanni...
متن کاملApproximate Invariance of the Inverse of the Covariance Matrix and the Resultant Pre-built STAP Processor
Space-time adaptive processing (STAP) has been proven to be optimum in scenarios where an airborne phased-array radar is used to search for moving targets. The STAP requires the inverse of the covariance matrix (ICM) of undesired signals. The computation of the real-time ICM is impractical at current computer speeds. Proposing two Theorems, this report indicates that the ICM is approximately in...
متن کامل